Math 144 Discussion Notes 10/13/2009

Problem 1 The composition of two 1-1 maps is 1-1.

Proof. Let $f: X \to Y$ and $g: Y \to Z$ be two 1-1 maps. We want to show that $g \circ f$ is an injective map. Suppose that $g \circ f(a_1) = g \circ f(a_2)$ where $a_1, a_2 \in X$. Then,

 $g \circ f(a_1) = g \circ f(a_2)$ $\iff g(f(a_1)) = g(f(a_2))$ $\stackrel{g \ 1-1}{\Longrightarrow} f(a_1) = f(a_2)$ $\stackrel{f \ 1-1}{\Longrightarrow} a_1 = a_2$ $\therefore g \circ f \text{ is injective.} \blacksquare$

Problem 2 Suppose that $f: W \to X$ and $g: X \to Y$ are functions such that $g \circ f$ is a bijection. Show that f is 1-1 and g is onto. Suppose that $f: X \to Y$ and $g: Y \to X$ are functions such that $g \circ f$ is the identity map from X onto itself and $f \circ g$ is the identity map from Y onto itself. What can be said about f and g?

Proof. Part 1:

Show f is 1-1: Suppose $f(a_1) = f(a_2)$. Then $g \circ f(a_1) = g \circ f(a_2)$. $g \circ f$ is a bijection $g \circ f$ is injective. Show g is onto: WTS $\forall y \in Y \exists x \in X$ such that g(x) = g(x) = y. As $g \circ f$ is a bijection $\forall y \in Y \exists w \in W$ such that g(f(w)) = y. Given any $y \in Y$, let $x = f(w) \in X$, then g(x) = y. $\therefore g$ is surjective. Part 2: First note that the identity function is ALWAYS a bijection!

So first since $g \circ f$ is the identity on X, we have that it is a bijection, and thus g is onto and f is 1-1.

Now since $f \circ g$ is the identity on Y, we have that it is also a bijection, and thus f is onto and g is 1-1. So we have that both f and g and both 1-1 and onto, thus they are both bijections. Moreover, they are called *inverses* of each other.

Problem 3 Define a bijection from $8^{\mathbb{N}}$ onto $2^{\mathbb{N}}$.

Proof. Think of elements in $2^{\mathbb{N}}$ as being written as $a_1, a_2, a_3, \dots, a_{3n-2}, a_{3n-1}, a_{3n}, \dots$, where $a_i \in \{0, 1\}$.

So we can rewrite any sequence in $2^{\mathbb{N}}$ as $t_1, t_2, \dots, t_n, \dots$ where $t_n = (a_{3n-2}, a_{3n-1}, a_{3n})$. View elements in $8^{\mathbb{N}}$ as being written as e_1, e_2, e_3, \dots , where $e_i \in \{0, 1, 2, 3, 4, 5, 6, 7\}$. Define the map $Bin : \{0, 1, 2, 3, 4, 5, 6, 7\} \to \{0, 1\}^3$ by $Bin(e_n) = t_n$ where

 t_n is the binary representation of e_n .

Note:

```
Bin (0) = (0,0,0)

Bin (1) = (0,0,1)

Bin (2) = (0,1,0)

Bin (3) = (0,1,1)

Bin (4) = (1,0,0)

Bin (5) = (1,0,1)

Bin (6) = (1,1,0)

Bin (7) = (1,1,1)
```

One important thing to notice here is that each number in $\{0, 1, 2, 3, 4, 5, 6, 7\}$ has a UNIQUE binary representation.

Define the map $BinDecomp: 8^{\mathbb{N}} \to 2^{\mathbb{N}}$ by $e_1, e_2, e_3, \dots \mapsto t_1, t_2, t_3, \dots$

Then, since the binary decomposition of each number is unique, BinDecomp is a bijection.

Problem 4 Prove that $2^{\mathbb{N}}$ is uncountable.

Proof. Suppose that $2^{\mathbb{N}}$ is countable.

Then we can write its elements as a squence:

 $\{a_1, a_2, a_3, \cdots\}$

If it were countable, then all elements of $2^{\mathbb{N}}$ would be listed here. Each a_i in the sequence above looks like:

 $a_i = a_{i1}, a_{i2}, a_{i3}, \cdots$ where $a_{ij} \in \{0, 1\}$.

Consider the element $b = b_1, b_2, b_3, \cdots$ where $b_i = \begin{cases} 0 \text{ if } a_{ii} = 1 \\ 1 \text{ if } a_{ii} = 0 \end{cases}$

Then b is an element of $2^{\mathbb{N}}$ that is not listed in the above sequence. Thus it is not possible to list every element of $2^{\mathbb{N}}$ in a sequence. $\therefore 2^{\mathbb{N}}$ is uncountable

Problem 5 Prove that $\mathbb{N}_0^{\mathbb{N}}$ is uncountable.

Proof. Suppose that $\mathbb{N}_0^{\mathbb{N}}$ is countable.

Then we can write its elements as a squence:

 $\{a_1, a_2, a_3, \cdots\}$

If it were countable, then all elements of $\mathbb{N}_0^{\mathbb{N}}$ would be listed here. Each a_i in the sequence above looks like:

 $a_i = a_{i1}, a_{i2}, a_{i3}, \cdots$ where $a_{ij} \in \mathbb{N}_0$.

Consider the element $b = b_1, b_2, b_3, \cdots$ where $b_i = \begin{cases} 0 \text{ if } a_{ii} \neq 0 \\ 1 \text{ if } a_{ii} = 0 \end{cases}$.

Then b is an element of $\mathbb{N}_0^{\mathbb{N}}$ that is not listed in the above sequence. Thus it is not possible to list every element of $\mathbb{N}_0^{\mathbb{N}}$ in a sequence. $\therefore \mathbb{N}_0^{\mathbb{N}}$ is uncountable

Problem 6 Show that $FS\mathbb{N}_0 \approx FS\mathbb{Z}$.

Proof. Consider the following ordering of \mathbb{Z} : $\mathbb{Z} = \{0, -1, 1, -2, 2, -3, 3, -4, 4, \cdots\}.$ Observe the following where $\lambda : \mathbb{N}_0 \to \mathbb{Z}$ and $\eta : \mathbb{Z} \to \mathbb{N}_0$: $\mathbb{N}_0 = \{0, 1, 2, 3, 4, 5, 6, 7, 8 \cdots\}$ $(\lambda = \downarrow \eta = \uparrow) \uparrow \cdots$ $\mathbb{Z} = \{0, -1, 1, -2, 2, -3, 3, -4, 4, \cdots\}$

This show that both λ and η are bijections and are inverses of each other. Given any sequence in $FS\mathbb{N}_0$ we can use the map λ to uniquely change the entries from being in \mathbb{N}_0 to being in \mathbb{Z} and thus attaining a sequence in $FS\mathbb{Z}$, and vice-versa using η .

Thus the map given by $\Lambda : FS\mathbb{N}_0 \to FS\mathbb{Z}, n_1, n_2, n_3, \dots \mapsto \lambda(n_1), \lambda(n_2), \lambda(n_3), \dots$ is a bijection (its inverse is given by $\Lambda^{-1} : FS\mathbb{Z} \to FS\mathbb{N}_0, z_1, z_2, z_3, \dots \mapsto \eta(n_1), \eta(n_2), \eta(n_3), \dots)$. $\therefore FS\mathbb{N}_0 \approx FS\mathbb{Z} \blacksquare$

Problem 7 Show that $\mathbb{N} \approx \mathbb{Q}^+$.

Proof. We want a bijection between \mathbb{N} and \mathbb{Q}^+ .

We have the bijections:

$$Decomp_{\mathbb{N}_0} : \mathbb{N} \to FS\mathbb{N}_0$$

$$\Lambda : FS\mathbb{N}_0 \to FS\mathbb{Z}$$

$$Comp_{\mathbb{Q}^+} : FS\mathbb{Z} \to \mathbb{Q}^+.$$

Since we know that the composition of bijections is a bijection we have:

$$Comp_{\mathbb{Q}^+} \circ \Lambda \circ Decomp_{\mathbb{N}_0} : \mathbb{N} \to \mathbb{Q}^+$$

which is a bijection. $\therefore \mathbb{N} \approx \mathbb{Q}^+ \blacksquare$