Math 144 Discussion Notes 10/13/2009

Problem 1 The composition of two 1-1 maps is 1-1.
Proof. Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be two 1-1 maps. We want to show that $g \circ f$ is an injective map. Suppose that $g \circ f\left(a_{1}\right)=g \circ f\left(a_{2}\right)$ where $a_{1}, a_{2} \in X$. Then,
$g \circ f\left(a_{1}\right)=g \circ f\left(a_{2}\right)$
$\Longleftrightarrow g\left(f\left(a_{1}\right)\right)=g\left(f\left(a_{2}\right)\right)$
$\stackrel{g 1-1}{\Longrightarrow} f\left(a_{1}\right)=f\left(a_{2}\right)$
$\stackrel{f}{\Longrightarrow}{ }^{1-1} a_{1}=a_{2}$
$\therefore g \circ f$ is injective.
Problem 2 Suppose that $f: W \rightarrow X$ and $g: X \rightarrow Y$ are functions such that $g \circ f$ is a bijection. Show that f is 1-1 and g is onto. Suppose that $f: X \rightarrow Y$ and $g: Y \rightarrow X$ are functions such that $g \circ f$ is the identity map from X onto itself and $f \circ g$ is the identity map from Y onto itself. What can be said about f and g ?

Proof. Part 1:
Show f is 1-1:
Suppose $f\left(a_{1}\right)=f\left(a_{2}\right)$.
Then $g \circ f\left(a_{1}\right)=g \circ f\left(a_{2}\right)$.
$g \circ f$ is a bijection $a_{1}=a_{2}$
$\therefore f$ is injective.
Show g is onto:
WTS $\forall y \in Y \exists x \in X$ such that $g(x)=g(x)=y$.
As $g \circ f$ is a bijection $\forall y \in Y \exists w \in W$ such that $g(f(w))=y$.
Given any $y \in Y$, let $x=f(w) \in X$, then $g(x)=y$.
$\therefore g$ is surjective. \checkmark
Part 2:
First note that the identity function is ALWAYS a bijection!
So first since $g \circ f$ is the identity on X, we have that it is a bijection, and thus g is onto and f is $1-1$.

Now since $f \circ g$ is the identity on Y, we have that it is also a bijection, and thus f is onto and g is $1-1$. So we have that both f and g and both 1-1 and onto, thus they are both bijections. Moreover, they are called inverses of each other.

Problem 3 Define a bijection from $8^{\mathbb{N}}$ onto $2^{\mathbb{N}}$.

Proof. Think of elements in $2^{\mathbb{N}}$ as being written as $a_{1}, a_{2}, a_{3}, \cdots, a_{3 n-2}, a_{3 n-1}, a_{3 n}, \cdots$, where $a_{i} \in\{0,1\}$.

So we can rewrite any sequence in $2^{\mathbb{N}}$ as $t_{1}, t_{2}, \cdots, t_{n}, \cdots$ where $t_{n}=\left(a_{3 n-2}, a_{3 n-1}, a_{3 n}\right)$.
View elements in $8^{\mathbb{N}}$ as being written as $e_{1}, e_{2}, e_{3}, \cdots$, where $e_{i} \in\{0,1,2,3,4,5,6,7\}$.
Define the map Bin: $\{0,1,2,3,4,5,6,7\} \rightarrow\{0,1\}^{3}$ by $\operatorname{Bin}\left(e_{n}\right)=t_{n}$ where t_{n} is the binary representation of e_{n}.

Note:

$$
\begin{aligned}
\operatorname{Bin}(0) & =(0,0,0) \\
\operatorname{Bin}(1) & =(0,0,1) \\
\operatorname{Bin}(2) & =(0,1,0) \\
\operatorname{Bin}(3) & =(0,1,1) \\
\operatorname{Bin}(4) & =(1,0,0) \\
\operatorname{Bin}(5) & =(1,0,1) \\
\operatorname{Bin}(6) & =(1,1,0) \\
\operatorname{Bin}(7) & =(1,1,1)
\end{aligned}
$$

One important thing to notice here is that each number in $\{0,1,2,3,4,5,6,7\}$ has a UNIQUE binary representation.

Define the map BinDecomp : $8^{\mathbb{N}} \rightarrow 2^{\mathbb{N}}$ by $e_{1}, e_{2}, e_{3}, \cdots \mapsto t_{1}, t_{2}, t_{3}, \cdots$.
Then, since the binary decomposition of each number is unique, BinDecomp is a bijection.

Problem 4 Prove that $2^{\mathbb{N}}$ is uncountable.
Proof. Suppose that $2^{\mathbb{N}}$ is countable.
Then we can write its elements as a squence:
$\left\{a_{1}, a_{2}, a_{3}, \cdots\right\}$
If it were countable, then all elements of $2^{\mathbb{N}}$ would be listed here.
Each a_{i} in the sequence above looks like:
$a_{i}=a_{i 1}, a_{i 2}, a_{i 3}, \cdots$ where $a_{i j} \in\{0,1\}$.
Consider the element $b=b_{1}, b_{2}, b_{3}, \cdots$ where $b_{i}=\left\{\begin{array}{l}0 \text { if } a_{i i}=1 \\ 1 \text { if } a_{i i}=0\end{array}\right.$.
Then b is an element of $2^{\mathbb{N}}$ that is not listed in the above sequence. Thus it is not possible to list every element of $2^{\mathbb{N}}$ in a sequence.
$\therefore 2^{\mathbb{N}}$ is uncountable
Problem 5 Prove that $\mathbb{N}_{0}^{\mathbb{N}}$ is uncountable.
Proof. Suppose that $\mathbb{N}_{0}^{\mathbb{N}}$ is countable.
Then we can write its elements as a squence:
$\left\{a_{1}, a_{2}, a_{3}, \cdots\right\}$
If it were countable, then all elements of $\mathbb{N}_{0}^{\mathbb{N}}$ would be listed here.
Each a_{i} in the sequence above looks like:
$a_{i}=a_{i 1}, a_{i 2}, a_{i 3}, \cdots$ where $a_{i j} \in \mathbb{N}_{0}$.

Consider the element $b=b_{1}, b_{2}, b_{3}, \cdots$ where $b_{i}=\left\{\begin{array}{c}0 \text { if } a_{i i} \neq 0 \\ 1 \text { if } a_{i i}=0\end{array}\right.$.
Then b is an element of $\mathbb{N}_{0}^{\mathbb{N}}$ that is not listed in the above sequence.
Thus it is not possible to list every element of $\mathbb{N}_{0}^{\mathbb{N}}$ in a sequence.
$\therefore \mathbb{N}_{0}^{\mathbb{N}}$ is uncountable
Problem 6 Show that $F S \mathbb{N}_{0} \approx F S \mathbb{Z}$.
Proof. Consider the following ordering of \mathbb{Z} :
$\mathbb{Z}=\{0,-1,1,-2,2,-3,3,-4,4, \cdots\}$.
Observe the following where $\lambda: \mathbb{N}_{0} \rightarrow \mathbb{Z}$ and $\eta: \mathbb{Z} \rightarrow \mathbb{N}_{0}$:

This show that both λ and η are bijections and are inverses of each other.
Given any sequence in $F S \mathbb{N}_{0}$ we can use the map λ to uniquely change the entries from being in \mathbb{N}_{0} to being in \mathbb{Z} and thus attaining a sequence in $F S \mathbb{Z}$, and vice-versa using η.

Thus the map given by $\Lambda: F S \mathbb{N}_{0} \rightarrow F S \mathbb{Z}, n_{1}, n_{2}, n_{3}, \cdots \mapsto \lambda\left(n_{1}\right), \lambda\left(n_{2}\right), \lambda\left(n_{3}\right), \cdots$ is a bijection (its inverse is given by $\Lambda^{-1}: F S \mathbb{Z} \rightarrow F S \mathbb{N}_{0}, z_{1}, z_{2}, z_{3}, \cdots \mapsto$ $\left.\eta\left(n_{1}\right), \eta\left(n_{2}\right), \eta\left(n_{3}\right), \cdots\right)$.
$\therefore F S \mathbb{N}_{0} \approx F S \mathbb{Z}$
Problem 7 Show that $\mathbb{N} \approx \mathbb{Q}^{+}$.
Proof. We want a bijection between \mathbb{N} and \mathbb{Q}^{+}.
We have the bijections:

$$
\begin{aligned}
\text { Decomp }_{\mathbb{N}_{0}} & : \mathbb{N} \rightarrow F S \mathbb{N}_{0} \\
\Lambda & : F S \mathbb{N}_{0} \rightarrow F S \mathbb{Z} \\
\text { Comp }_{\mathbb{Q}^{+}} & : F S \mathbb{Z} \rightarrow \mathbb{Q}^{+} .
\end{aligned}
$$

Since we know that the composition of bijections is a bijection we have:

$$
\operatorname{Comp}_{\mathbb{Q}^{+}} \circ \Lambda \circ \operatorname{Decomp}_{\mathbb{N}_{0}}: \mathbb{N} \rightarrow \mathbb{Q}^{+}
$$

which is a bijection.
$\therefore \mathbb{N} \approx \mathbb{Q}^{+}$

